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ABSTRACT A, N

The ability to use radar to discriminate Arctic Sea ice type¥‘has-been
investigated using surface-based and helicopter-borne scatteromeyer systems.
The surface-based F*“"W radar operated at 1.5 GHz and at multiplee frequencies
in the 8-18 GHz region. Measurements were made at angles of 10° to 70; from
nadir. The helicopter-based radar operated at the 8-18 GHz frequencies with
incidence angles of 0°'to 60°.1 Extensive surface-truth measurements were made
at or near the time of backscatter measurement to describe the physical and
electrical properties of the polar scene. Measurements in the 8-18 GHz region
verify the ability to discriminate multiyear, thick first-year, thin first-year,
and pressure-ridged sea ice and lake ice. The lowest frequency, 9 GHz, was
found to provide the greatest contrast between these ice categories, with sig-
nificant levels of separation existing between angles from IS; to 70°. The
radar cross-sections for Iiké antenna polarizations, VV and HH, were very
similar in absolute level and angular response. Cross-polarization, VH and
HV provided the greatest contrast between ice types. The 1.5 GHz measurements
showed that thick first-year, thin first-year, and multiyear sea ice cannot
be distinguished at 10° to 60° incidence angles with like polarization, VV,
by backscatter alone; but that undeformed sea ice can be discriminated from
pressure-ridged ice and lake ice. The effect of snow cover on the backscatter
from thick first-year ice was also investigated. It contributes on the order
of 0 to 4 dB, depending on frequency and incidence angle; the contribution of
the snow layer increased with increasing frequency. Snow cover on smooth
lake ice was found to be a major backscatter mechanism. Summer measurements
demonstrate the inability to extend the knowledge of the backscatter from sea

ice under spring conditions to all seasons.

o




INTRODUCT ION

Recent scientific and operational interests in the ice cover of the
Arctic Ocean have resulted in an extensive set of experiments involving
the use of radar for monitoring the properties of sea ice [1-6]. Most of
the experiments by other investigators have used aircraft-borne scattero~
meters and imaging radars, while the University of Kansas experimenters
have concentrated on surface-based and near-surface helicopter-based measure-
ments. The aircraft measurements were usually at a single frequency and
occasionally at two frequencies. The University of Kansas measurements
were over a wide range of frequencies (initially, 1.5 GHz, L-band, and §-18
GHz, Ku-X-band, and more recently, just 8-18 GHz). The purpose of all of
these experiments is to gain more information about the ice and about the
radar methods for measuring its properties.

The University of Kansas experiments with the surface-based system
started in May of 1977 on the fast ice off Point Barrow, Alaska [7]. These
investigations were followed in April of 1978 by surface and helicopter
experiments at Point Barrow [8]; in March of 1979, as a part of the Canadian
Surveillance Satellite program, by surface- and hellicopter-based experiments
of f the MacKenzie Delta [9]; and in August of 1980 by experiments from a
Swedish icebreaker, the YMER, in the pack ice north and west of Svalbard [10].

The basic objectives of the research are: (1) to establish the ability
of radar to discriminate ice features; (2) to identify optimum frequency,
polarization and incidence angle for ice discrimination; (3) to compare care-
fully controlied L-band measurements with those using SEASAT SAR (the experi-
mental phase of this is essentially complete); (4) to develop a better under-

standing, theoretical, empirical, and experimental, of radar-ice interactions.




EXPERIMENT DESCRIPTION

Active microwave sensors integrated with a surface-based structure and
small- and medium-size helicopters were used to procure backscattering cross-
section per unit area (oo) data. These measurements using the University
of Kansas TRAMAS, surface-based, and the HELOSCAT, helicopter-borne, scatter-
ometer systems (Table 1) made use of frequency and spatial averaging to
reduce signal scintillation caused by the phenomenon of fading. Absolute

calibration ensues through comparison of the measured return from the polar

scene and the measured return from a Luneberg lens reflector of known radar
cross-section. In conjunction, surface observations were made to describe
the physical and electrical properties of the ice features (Table 2).

Many types of experiments were performed in the investigation. Angular,
polarization, and frequency responses were obtained with both the surface-
and heiicopter-based sensors. Multiple locations on an ice floe were investi-
gated to get spatial sampling. Also, the snow layer within the radar foot-
print was modified to determine the effect of snow cover on the backscatter
cross-section of ice. Features such as ridging, snowpack, and melt pools

were also observed.

SUMMARY OF RESULTS TO DATE

Three experimental data sets have been obtained during the spring in
the Beaufort Sea and one during the summer in the Greenland Sea and Arctic
Ocean. Most of the experiments have been on ice that has been attached to
land because of the difficulty of getting out to the pack ice during the

spring season when the fast ice extends far from shore. The 1980 summer
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TABLE 2

SURFACE-TRUTH INFORMATION

For every site --

1
2)
3)
4)
5)
6)
7)

Classification of ice type

Air temperature

Air-snow interface temperature
Snow depth

Snow-ice interface temperature
lce thickness

Description of surface condition ~- both large and small scale

Additional detailed study --

1)
2)

3)

b)
5)
6)

lce salinity profile

Description of vertical inhomogeneities (visual and vertical
thin sections of ice cores)

Description of horizontal inhomogeneities (thin sections of ice
cores)

lce temperature profiles

Snow density

Preferred crystal orientation
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expedition was the first measurement in pack ice. Table 3 summarizes the
experiments performed to date. Classification of Arctic sea ice according

to age or thickness Is shown in Table 4.

L-BAND RESULTS

Measurements were made under spring conditions with a calibrated surface-
based radar that swept from 1.1 to 1.9 GHz. These measurements were initiated
to obtain a calibrated data base to determine in advance what was going to
be seen by the SEASAT SAR, and then to aid in the interpretation of the SAK
data. It was found from the surface-based measurements that there is no
contrast between sea-ice types at these frequencies and at the SEASAT pointing
angle of 20° (Figures 1 and 2). Comparison of the backscatter coefficients
acquired for multiyear, thick first-year, thin first-year and lake ice, and

! : a smafl pressure-ridge with the results obtained from imaging radars [11,12,
13] indicates that the utility of an L-band radar is in distinguishing between

prominent features such as linear ridges, relatively flat areas of pack ice,

E land, and lake ice. The angular response of the backscattering cross-section
does suggest, however, that if angles greater than 50° and like polarization
(V) are used, multiyear ice may be discriminable from thick and thin first- |
year ice. }
| Multiyear, pressure-ridged, and lake ice showed less sample-to-sample
variability than would be expected on the basis of surface scattering, indi-
cating that volume scattering plays a role in their scattering processes.

This may prove useful in interpreting imagery using an L-band radar. As

N an example, because of the additional samples in each measurement, multiyear

ice floes will have textural tones which are more uniform than floes of

thick first-year ice.
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TABLE 4

CLASSIFICATION OF ARCTIC SEA ICE

1) Open water

2) New ice 0-5 cm
3) Thin young ice 5-18 cm
4) Thick young ice 18-30 cm
5) Thin first-year ice 30-90 cm

6) Thick first-year ice 90-180 cm

7) Multiyear ice 180-360 cm
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4 r Sensor: TRAMAS
Frequency (GHz): 1.5
0k Polarization: VV

-4 o——— Thick First-Year
B m——— Thin First-Year
A——=— | 3ke |cCe

Radar Cross Section - ¢° (dB)
S
1

-44 1 [ B ] L ] 11

0 10 20 30 40 50 60 70 80
Angle of Incidence (Degrees)

' | Figure 1. Average Scattering Coefficient of Thick First-Year, Thin First=Year,
and Lake Ice at 1.5 GHz (March 1979)
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Sensor: TRAMAS
Frequency (GHz): 1.5
Polarization: VV

»——= Multiyear--MY
4r &—— Thick First-Year--TFY
o—= Fresh Water Lake--LAKE
ok ®-——— Pressure Ridge--PR

= __—a

—‘~\

Radar Cross Seclion - ¢° (dB)

_36 1 t 1 | | 1 ]
0 10 20 30 40 50 60 70

Angle of Incidence (Degrees)

Figure 2, Scattering Coefficient of Thick First-Year, Multiyear, Fresh Water
Lake, and Pressure Ridge Ice at 1.5 GHz (May 1977).
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Ku-X-BAND RESULTS

A general conclusion that may be drawn from the measurements acquired
during the springs of 1977, 1978, and 1979 is that 9 GHz is the best of the
frequencies used for most discrimination between ice types. The middle angles
of incidence (30° to 60°) appear most suitable for ice-type discrimination.
The 1980 summer data are still being analyzed, and general conclusions have
not been made.

Strong similarities exist between the angular responses of the radar
cross-sections at different frequencies in the 8-18 GHz frequency range
(Figure 3). The response of multiyear ice, a small pressure-ridge, thick
first-year ice, and lake ice shown in Figure 4 is typical of like-polarization.
Vertical and horizontal polarizations were nearly identical in response for
small angles of incidence, but at larger angles vertical polarization is
slightly higher in absolute level. A possible reason for higher vertical
polarization return is the presence of small-scale surface roughness [14,15].
Physically, the vertically-polarized wave is more sensitive to surface slopes
than the horizontally-polarized wave when the surface roughness is small com-
pared to the incident wavelength. Cross-polarization resulted in much
lower but still measurable radar cross-sections. This suggests that back-
scatter from these ice types is not purely surface scatter. A purely surface-
scattering relatively smooth medium returns extremely low cross-polarization
signal levels which probably are below the noise level of the instrument.

The difference between the radar cross-sections of multiyear and thick
first-year ice is shown in Figures 5 and 6 for angles from 10° to 70° and

like- and cross-polarization. These results, obtained with the surface-based
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Sensor: TRAMAS
-Polarization: VV

Muitiyear--MY
Thick First-Year--TFY
Polarization: VV

Frequency (GHz):

Radar Cross Section - ¢° (dB)
P

1 1 1 L 1 —

Figure 3.

10 20 30 40 50 60 70
Angle of Incidence (Degrees)

Scattering Coefficient of Thick First-Year and Multiyear Ice at 1.5,
9.0, 13.0, and 17.0 GHz (May 1977).
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Sensor: TRAMAS
Frequency (GHz): 13
Polarization: HH

W—==— Multiyear--MY
4r &—— Thick First-Year --TFY
- N O——=Fresh Water Lake --LAKE
0F N, "7~ Pressure Ridge--PR

_16 —

Radar Cross Section - ¢° (dB)

-36 | 1 1 1L 1
0 10 200 30 4 50 60 70
Angle of Incidence (Degrees)

Figure 4. Scattering Coefficient of Thick First-Year, Multiyear, Fresh Water
Loke, and Pressure Ridge Ice ot 13 GHz (May 1977).
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Difference Between Radar Cross Section of Thick First-Year and
Multiyear Ice at 1.5, 9.0, 13.0, and 17.0 GHz with Vertical
Polarization
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Difference Between Radar Cross Section of Thick First-Year and ‘
Multiyear Ice at 1.5, 2.0, 13.0, and 17,0 GHz with Cross i
Polarization (May 1977).
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radar, indicate that 9 GHz is the better discriminating frequency. Cross-
polarization and the choice of a middie incidence angle also improves contrast.
Contrasts of thin first-year ice with a surface layer of salt flowers and

lake ice with thick first-year ice are shown in Figures 7 and 8, respectively.
Thin first-year cross-sections were higher than those of thick first-year

ice, with the large angles providing the greatest contrast. The contrast
between snow-covered lake ice and thick first-year sea ice acquired under

very cold conditions (air = -35° C) in 1979 shows that lake-ice cross-sections
were more than 5 dB lower at 9 and 13 GHz and 2 dB lower at 17 GHz than
cross-sections for thick first-year ice. Contrast between lake ice with a

bare surface and thick first-year ice under warm conditions (air = 0° C) in !
1977 shows that lake-ice cross-sections were more than 5 dB lower. Low cross-
sections fr?m lake-ice are expected and are explained by the typically smooth

air- or snow-ice interface, the low dielectric constant of snow and ice, and

the sparse population of scattering sources in the ice.

EFFECT OF SNOW COVER ON THE RADAR CROSS~SECTION OF ICE

. The effect of a snow layer on the radar scattering cross~section of sea
and lake ice was investigated. As the thickness of the snow layer on thick
first-year sea ice increased, the absolute level of the radar cross-section
at the Ku-X-band frequencies also increased (Figure 9). Thus, the addition
of a snow layer enhances the level of return, with differences ranging from
I-4 dB between snow-covered and bare-surfaced ice (Figure 10). The effect
of a snow layer on lake ice was much more striking. Measurements were

; acquired under cold conditions of ice with a normal 4-cm snow-layer, a

roughened snow-surface (snowmobile tracks), a gridded snow-layer (grooves
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Figure 7. Difference Between Radar Cross-Section of Thin First-Year and Thick
First-Year Sea Ice at 1.5, 9.0, 13.0, and 17.0 GHz .with Vertical
Polarization (TRAMAS, March 1979),
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Figure 8. Difference Between Radar Cross-Section of Thick First-Year Sea Ice {
and Lake Ice at 1,5, 9.0, 13.0, and 17.0 GHz with Vertical
Polarization (TRAMAS, March 1979).
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Radar Scattering Cross-Section ¢° (dB)

_30 1 1 N | 1 i J

; 2 4 6 8 10 12 14
‘f Snow Depth (cm)

' Figure 9. The Response of the Scattering Coefficient of Thick First-Year Ice,
Site 78, as a Function of Snow Depth at 9, 13, and 17 GHz, an
Incidence Angle of 55°, and HH Polarization (April 1978),
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! Figure 10. Average Radar Cross~Sections for Bare and Snow=Covered Thick
First~Year Ice at 9 GHz (April 1978).
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b-cm deep, 3-cm wide, and 15-cm spacings), and ice with the snow layer !

removed (Figures 11 and 12). Normal snow and roughened snow-covered ice

showed similar cross-sections, with the gridded snow-covered ice having the

|

|

!

| greatest backscatter. Very large absolute-level differences (8 dB) were

' found to exist between ice with a bare surface and ice with a snow layer.
Hence, the snow layer on sea or lake ice cannot be considered to be trans-

l parent and snow surface roughness may have a minor effect on the level of
backscatter. As for lake ice, the snow layer is a major contributor to

l

backscatter. Clearly, more exhaustive study into the effects of snow on

the backscatter from ice must be performed.

COMPARISON OF HELICOPTER- AND SURFACE-BASED MEASUREMENTS

The helicopter-borne scatterometer has acquired radar cross-sections

! _ that are, in general, very similar to those described by the surface-based
instrument. The cross-sections of thin first-year and lake ice are con-
trasted with thick first-year ice in Figures 13, 14, and 15. Examination

of the level of contrast and the general angular-response of the TRAMAS and
HELOSCAT radars for thin first-year and thick first-year ice shows that at

9 GHz the HELOSCAT acquired approximately a 2 dB higher contrast than the
TRAMAS, at 13 GHz there is an absolute-level disagreement at 40° with the
HELOSCAT seeing a 3 dB higher contrast, and at 17 GHz there is complete
agreement. Constrast between lake and thick first-year ice shows that at

9 and 13 GHz the TRAMAS produced results with much greater contrast (measured
a much lower scattering cross-section for lake ice) at 60°. This may be
attributed to a greater signal-to-coherent-noise ratio for the surface-based

instrument. In summary, the surface-based and low-altitude helicopter-borne
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Figure 11. Scattering Coefficient of Lake Ice with Bare, Normal, Rough, and
Very Rough Snow Cover Conditions at 9 GHz (March 1979).
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(VV) for the TRAMAS and HELOSCAT Radars.,
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radars see similar ice features with radar cross-sections contrasts that

correlate well.

RADAR CROSS-SECTIONS OF SEA ICE IN THE SUMMER MONTHS i

Data were acquired from pressure-ridged, thick first-year, thin first-
year, multiyear, and new ice during the 1980 summer season. Preliminary
results (Figure 16) demonstrate the inability to extend the knowledge of
the radar backscatter from sea ice under spring conditions to all seasons.
What is important to notice is the reversal of brightness trends that has
occurred between thick first-year and multiyear ice. When a comparison is
made between the cross-sections of spring and summer ice it is found that
the multiyear ice response has changed only modestly. This correlates well i

with the lack of any perceivable major changes in the physical properties of ;

the ice. However, the snowpack had gone through metamorphosis and become a
solid layer of recrystallized low-salinity ice. Multiyear floes are composed
of two major ice features: snowpack-and-ice and meltpools-and-ice. The number
of pools was not significantly greater in the summer than in the spring. The
dielectric properties and the scattering centers in the upper layers of the

ice and the small-scale surface roughness remain similar between spring and
summer, the number of meltpools remains on the same order, and the electrical
characteristics of the snow-pack at these radar frequencies are only moderately
modified, even though the snow layer has gone through a radical change in
physical form. Hence, cross-sections of ice measured at nearly the same tem-
perature in 1977 should be similar. Returns from thick first-year ice were,
however, on the order of 10 dB brighter in the summer. Variations in the

spatial physical properties of the ice were just as dramatic. The ice was

heavily spotted with meltpools. in contrast, in the spring only snowpack-
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and ice conditions exist. Many of the summer meltpools were highly saline
and, in some instances, melted to the sea water below. In contrast, the

pools on multiyear ice were much more shallow and contained fresh water.

Noting the preliminary nature of these results, even in the summer
season there appears to be an ability to discriminate among ice types (Figure
16). However, because of the dramatic change in brightness of thick first-
year ice between spring and summer, a transitory period of confusion is

expected to occur.
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